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Talk Summary

 Energy Transitioning

« Smart Energy Grids for Marine and Waterfront Applications
» Resilient Interconnected Infrastructures

« Fast Charging for Marine and Waterfront Applications

* Nuclear-Renewable Hybrid Energy Systems for Marine and Waterfront
Applications

« Smart Energy Networks



Energy Transitioning

Task-1: Analysis of
Energy Grids for a

Given Region or
Application

Track-5: Smart
Energy for Water

Transportation
Networks P

Infrastructures

Task-2: Low-Carbon Task-3: Integrated Task-4: Supply Side
Energy Transition Hybrid Energy Design and Control
Scenario Modeling and Strategies for Smart
Assessment Simulation Energy Grids
Track-4: Smart Track-2: Gas and -
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Grids and Storage
Technologies
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Transitioning
Projects for
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Task-8: Energy
Transition Planning,
Technology
Deployment and
Business Modeling

Module-4: Smart
Sensors, Module-3: Al,
Monitoring, Optimization,

Module-2: Energy Module-1: Energy
Computational Transitioning
Modeling and Scenario

Simulation Modelin
Centers &
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Clean Energy
Technologies

Energy Transitioning

Policies, Procedures, and Regulations

Region, Application, and Integration

Business Models and Management Scheme Strategies

Control Strategies

Water Load

Transportation Load Infrastructure Load

Gas/H2 Load Electrical Load

Water Sources

Gas/H2 Generation Power Generation

Thermal Load

Thermal Generation
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Hybrid Energy Infrastructures — Marine

and Waterfront Regions

‘ Hydro Power Plants /

O Thermal Power Plants

‘ Nuclear Power Plants

Fuel Cells

Ocean/Tide
Plants

Clustering, Data Mining for
Optimized Energy
Production/Supply Chain

Classify Energy Use &
Supply as per Amounts /
Risks / Environmental
Impacts.
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Analyze and Evaluate
Current & Future
Energy Needs in each
Geographical Area
using LCA/LCC Index

Cause ltem

o,
Welfare I Productivity

P— \_’
cation l Air Pollution
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Planning of Resilient Energy-Water-Food-Health-Transportation
Infrastructures — Marine and Waterfront Regions
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‘ Energy Supply

Transportation
Network

Energy Conversion Technologies

Thermal Thermal Electri
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Smart Energy Grid Superstructure
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Interconnected Micro Energy Grids

Transportation Network - RN

Water Network - WN Adaptive Interconnected Micro
Thermal Network - TN Energy Grid Superstructure

Electric Network - EN

Gas Network — GN

-

WF EF
GF> 7
TF RF

MEG1
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DC Power Flow Grid
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Performance Modeling

e Quality

e Reliability
e Safety

* Security
* Resiliency Steady State
* Economy

e Technical

e Environmental

e Human Interface

e Social / Cultural

e Regulation Compliance

Real Time

Transient

Seasonal
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e KPI Modeling

e Socio-cultural
e Economic
* Environmental

* Reliability / Safety / Security

e Technical

KPl Modeling

 EWFHT (Generation / Storage / Loads)

Component 1

Component 2

Component 3

Component 4

Component i

Eq

Socio-Cultural {

Economic

Environmental

Reliability =

Technical <

A4

« Public Acceptance
* Diversity of Supply

+ Capital Cost

* Replacement Cost
* Operational Cost
* Payback Period

+ Life Cycle

» Greenhouse Gas Emissions
» Pollotant Emissions

* Noise

» Waste

+ System average interruption distribution index (SAIDI)
+ System average interruption frequency index (SAIFI)
+ Average service availability index (ASAID)

* Expected energy not served (EENS)

* Customer average intermuption duration index (CAIDI)
+ Average energy not supplied (AENS)

* Power Balance

* Power Losses

* Total Harmonic Distortion

* Capacity Factor

* Load Factor

* Microgrid Supply, Load, Reliability, Availability
* Electric Grid Dependence
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LOPA (Layer of Protection Analysis)

LOPA Definition: is to determine if there are sufficient layers of protection
against the consequences of an accident scenario (can the risk be tolerated?).
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LORPA: Layers of Reslliency and IRLS IPLs

Proteciion Analysis DN
- o T/

|

(mlndependent Resiliency Layers

IPL-Independent Protection Layers
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Interconnected Infrastructures

Interface Systems

Interconnected
Systems




Energy Loads Coupling with Interconnected
Infrastructures

, Water Load
Electric Load

Transportation

Health Load Food Load



Interface Design for Interconnected Systems, Application
on Energy-Water-Transportation Networks

Health Material Electricity Gas Thermal Envirnmt. Water Transport Data Social Policy
Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface
F1 F2 F3 FA F5 F6 F7 F8 F9 F10 F11

- I

Vehicle  Building

Health Material Electricity Gas Thermal Envirnmt. Water Transport Data Social Policy
Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

Water Pumps Machine



Integrated, Connected, and Autonomous Systems

MEG Water Facility Integrated Systems
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Connected Systems

Autonomous Systems

Waste-to-
Energy Facility

~

Charging
Station

—————— Waste

Electricity

Control

................... Water




Regional Gas-Power MEG Planning

Region Cell Arrangement
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http://www.cepa.com/wp-content/uploads/2011/06/oil-network-illustration.gif
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Energy flow schematic of interconnected-MEGs system
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Evaluation and Optimization of Interconnected Micro Energy
Grids with Gas-Power, CHP, and Renewable Technologies
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Mobile Microgrid Trailer
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Multiple Resources
and Multiple
Products-based
Coupling
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Hybrid Energy tan
System

Thermal Network
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Wind Power

E Fuel Cell I
Nuclear-Renewable Hybrid Energy T =5

System Simulator i |

In direct coupling method, E20 Unie
electricity is generated from :

different RESs and reactors, and Power
the resources simultaneously serve -

the electric and thermal
requ’ ' s

. L)
L]
n
: a
L]
L]
H
S Electrolvzer
?@ - and H, tank
nilis E
H
Energy

Storage
Eleciric Power I
Thermal Power

Hydrogen

Electric Load

Electric




Deployments of Nuclear-Renewable Hybrid Energy Systems
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Resilient Interconnected Micro Energy

Grids for Sustainable Railways
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Typical Topology of an AC Railway Electrification

Medium/High-Voltage Distribution Grid

10-230 kV AC 50/60 Hz

Non-Traction g:]:f : :,ﬂ“ Tl‘;ﬂiﬂﬂ Non-Traction
Transformer ower i
ransformer Substation Substation Transformer
l Traction Power Distribution System l I
[ 25 kV AC, 50/60 Hz

Traction Power Return Systemn (rails)



Resilient Interconnected Micro Energy
Grids for Sustainable Railways

Active Power (kW)

Power supplied and consumed by train from different sources
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1000
0
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Interconnected Micro Grids for Transportation
Charging
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Schematic of Hybrid AC-DC RIMG Including Power and Energy Sources
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Integrated Control of
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Hybrid Charging Station
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Hybrid Charging Station
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EV Charging Models
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Electric Bus Charging On Route
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Optimization of Route Charging

e outeA Routed) Routec.

Average Consumption (kWh/km) 1.8 2.2 2.2



Transportation Electrification Infrastructure

Marine Port

Bus Charging Station
Bus Charging Station
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CO2 Gas Emission by Different Types of Marine Ships in
2012

EER
/"’

= Vehicle = RO-RO ther liquids tankers = Oil Tankers
= Liquefied gas tanker m General Cargo = Ferry-ROPax m Ferry-pax only = Cruise
m Container m Chemical tanker = Bulk Carrier

CO, Emission by Different Marine Ships in 2012
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CO2 Emission by Marine Ships

e CO2 emission from shipping has been increased by 2.4% from 2013 to
2015

e CO2 emission was 910 million tons in 2013 but in 2015 it was 932
million tons

Third IMO GHG Study (million tonnes) ICCT (million tonnes)

Global CO, 51959 32133 31,822 33661 34,726 34,968 35672 36,084 36,062

Emissions’

Intemnational 881 916 858 773 853 805 801 813 812

Shipping
St 133 139 75 83 10 87 73 78 78
Shipping
Fishing 86 80 44 58 58 51 36 39 42
Total Shipping 1100 1135 977 914 1,021 942 910 930 932
% of global 35% 35%  31% 27% 29%  26% 25% 26% 26%

CO, Emission from Marine Ship



Projection of CO2 Emission by 2050

3,000

2,500

:

€02 emissions (Mton)
‘_H
[ = TR .
[, B % ]

-

=
=1}

:

2010 2015 2020 2025 2030 2035 2040 2045 2050

BAU projections of CO2 emissions from international maritime transport 2012-2050 [4]

BAU: Business As Usual
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International Shipping and Environmental Impact

20,000
15,000
10,000

5,000

Number of Merchant Ships

Number of World Merchant Ships

I Percentage

Ship Class

e NUmMber of Ships

Distribution of World Merchant Ships

j OntarioTech
UNIVERSITY

| g v
Smart Energy Systems Lab A A

CO, Emissions (%) From Different Ships

B

Percentage

o

= Container Ships = Bulk Carriers = Oil Tankers Other

Percentage of CO, Emissions from Different Types of Ships
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Projection of CO.Emissions from Marine Ships

» IMO predicts that tonne-miles of goods
moved globally will increase 2% to 4%
annually between now and 2050.

> In 2007, international shipping accounted
for 870 million MT of CO: emissions and
including domestic shipping it was around
1050 million MT

> At current rates of increase, shipping sector
CO:2 is expected to climb to between 2,500
million MT and 3,650 million MT by 2050.

2500

from Ships (mmt CO,/yr)

w 1500

o}
1

GHG emissions projection by marine ships



Marine Ships Vs GHG Emissions

> If global shipping were a country, it would be considered as the sixth largest producer of GHG emission
» Ocean-going shipping is responsible for more than 3% of global GHG emission

» Emission from ocean-going ships is almost twice the emission from total registered cars in US

» 15 largest ships emit as much SOx as the worlds tot.al 760 million cars.

Third IMO GHG Study (million tonnes) ICCT (million tonnes)
Year 2008 2009 2010 2011 2012 2013 2014 2015
Global CO2 Emissions 32,133 31,822 33,661 34,726 34,968 35,672 36,084 36,062
CO2 Emissions from International Shipping 916 858 773 853 805 801 813 812
CO2 Emissions from Domestic Shipping 139 75 83 110 87 73 78 78
CO2 Emissions from Fishing 80 44 58 58 51 36 39 42
Total CO2 Emissions from Shipping 1,135 977 914 1,021 943 910 930 932
Total CO2 Emissions from Shipping (%) 4 3 3 3 3 3 3 3
Percentage of International Shipping to Total 31 38 35 84 85 38 37 87

Shipping Emissions

GHG emissions by marine ships



Fuel Efficiency and GHG Emissions with Marine

Marine ships are considered the 6 largest contributor to GHG emissions due to the use of conventional fossil fuel as
energy supply.

360km _
Y el

247km

v R

45km

v, BRI,

Distance in kilometres one metric ton of cargo travels on 1 litre of fuel.

_ | B 558% more
= B |

9.2 121 60.5

G02 grams per metric ton/km

Source: Research and Traffic Group analysis 49



Power and Weight Capacity of Marine Units

Weight(kg) Required power
capacity (~“hp)

Cargo ships medium
Cruise 4000 passengers 20000 1102
Ferry Medium 8000 441
Boat 6 persons 2100 115

50



Shi IMO
POUEIS Baltic Sunrise (9307633 )
number)

N 2 H H
Date delivered / Builder ov 08, 2005 / Hyundai Heavy

(where built)

. Korea
- Flag / Port of Registry Marshall Islands / Majuro
a4 Call sign V7NP2 / 538006485
- Type of ship Oil Tanker
16 Lengthoverall (LOA) 333.12'm
Length between
324.00
. perpendiculars (LBP) m
- Extreme breadth (Beam) 60.04 m
9 Deadweight 309373 MT
10 Displacement 352410 MT

Table: Parameters of ‘Baltic Sunrise’

Industries Co. Ltd., Ulsan Shipyard,

Ship Parameters and Voyage Route
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Estimation of Ship Energy Demand

Pship (xy) — RTBI{S ’ Vs(x,y)

_ 2
Rrpys = Crpps - zpw Ss Vs avg

Beam of the ship Parameter B 60 m
- Volume displacement of the ship Parameter v 344649.08 m3 CTBHS = CFS + CRS + CA
- Draught of the ship Parameter D 21.6m LBP
Ly =
- Extreme breadth (Beam) Parameter Bex 60.04 m 0-97
v
Al d ht of the shi P t 16.15 — . . —
- verage draught of the ship arameter D_{Il?g m Ss — 1 7Lwl B + )
- Length between perpendiculars Parameter LBEP 324 m
. : Vs_avg X L,
- Gravitational acceleration Parameter g 9.81 m/s? R —
. Seawater density at 30°C temperature Parameter Pw 1021.7 kg/m3 ns ‘yw
o o 0.075
. Seawater viscosity at 30°C temperature Parameter Y 0.84931x 10° m3s CF —
s
(]()g Rns - 2)2
Average speed of the ship Parameter Vs_avg 11.94 kn or 6.1424
msl o Vs_max
Incremental resistance coefficient due Assumption Ca 0.0004 ns = X L
to surface roughness of ship v 9 wi
v B
Maximum speed of the ship Parameter Vs_max 17.9kn or 9.2185 ms = .
: Ly, ' D
Table: Parameters of ‘Baltic Sunrise’ A, = B, X D_avg
v
C.



Ship Speed Vs Propulsive Energy Demand

Speed of Baltic Sunrise Effective Ship Power
20 <25
18 2
16 =20
~ 14 o
€ 12 815
2 10 o
o g =
[oR -
N 6 g 10
4 i
2 5
0
o o o o o o o o o o o o o o
e 2 2 2 2 2 9 2 9 e e 9 2 9 0
o o o o o o o o o o o o o o N N Q N Q Q Q Q Q N Q Q Q Q
2233332322322 232233 P P P F P
2253822328235 838 OO ®ES®D W
WY s 55 °e e e T R =R oM PN S VA A SN A A PPN RIPAVZIAC
Date and Time Date and Time
Fig: Speed of ‘Baltic Sunrise’ Fig: Effective power of ‘Baltic Sunrise’



SMR, vSMR, MR/MMR

* SMR is a fourth-generation nuclear reactor having power equivalent
to 300 MWe or less.

 vYSMR has power rating less than 15 Mwe.
e Microreactor (MR/MMR) is typically ranges from 1 MWe to 50 MWe.



@l 1Onl:arioTedA
| UNIVERSITY

Nuclear Powered Ship e\ /o)

Nuclear Powered Ship (Non-Military) Commercial Nuclear-Powered Ship

Count
. 7
(’ _ ’ I
- usa  coMaIn e g0 1962 ot 1977  ad .
er Service & b 4
-

- N FDR 38 1968 Notln 1982 w
ny Carrier Service
1
- Japan Cargo PWR 36 1972 Not'ln 1996
Service
- Russia cebrea L 171 1989 In Service
ker 40M
- Russia P pwi 342 1975 Notln 2008
ker Service
. Icebrea KLT- )
- Russia ker 40M 135 1988 In Service
) Icebrea KLT- .
- Russia ker 40M 171 1989 In Service
- Russia cebrea o 342 1989 In Service ) _ ) Powered by Bing
ker 900A ® Australian Bureau of Statistics, GeoNames, Microsoft, Navinfo, Op Map, TomTom, Wikiped
. Icebrea OK- .
- Russia Ker 900A 342 2007 In Service
- Russia P pwr 318 1989 Notln 2008
ker Service
700 naval nuclear reactors and 200 of them are still in Distribution of Nuclear Powered Ships

operation for military use
95



Estimation of Ship Energy Demand

Pship (xy) — RTBI{S ’ Vs(x,y)

_ 2
Rrpys = Crpps - zpw Ss Vs avg

Beam of the ship Parameter B 60 m
- Volume displacement of the ship Parameter v 344649.08 m3 CTBHS = CFS + CRS + CA
- Draught of the ship Parameter D 21.6m LBP
Ly =
- Extreme breadth (Beam) Parameter Bex 60.04 m 0-97
v
Al d ht of the shi P t 16.15 — . . —
- verage draught of the ship arameter D_{Il?g m Ss — 1 7Lwl B + )
- Length between perpendiculars Parameter LBEP 324 m
. : Vs_avg X L,
- Gravitational acceleration Parameter g 9.81 m/s? R —
. Seawater density at 30°C temperature Parameter Pw 1021.7 kg/m3 ns ‘yw
o o 0.075
. Seawater viscosity at 30°C temperature Parameter Y 0.84931x 10° m3s CF —
s
(]()g Rns - 2)2
Average speed of the ship Parameter Vs_avg 11.94 kn or 6.1424
msl o Vs_max
Incremental resistance coefficient due Assumption Ca 0.0004 ns = X L
to surface roughness of ship v 9 wi
v B
Maximum speed of the ship Parameter Vs_max 17.9kn or 9.2185 ms = .
: Ly, ' D
A, = B, X D_avg
v
C.

Parameters of “‘Baltic Sunrise’



Estimation of Energy Demand of Marine Ship for
a Given Route

e Estimation of Ship Power
1
Rrgus= Crus 'EPW S5 - V*
Rrgys = Total bare hull resistance of ship
Crgys = Total hull resistance of ship coefficient
S = Ship surface wetted

v = Speed of the ship



Applications on Marine Ships with SMR

Cargo Module

Propulsion Module
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Nuclear Energy
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Implementation in Marine Ships
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FCS Load Profile

FCS Load Profile

The proposed FCS load profile includes 35% Level 1,
35% Level 2, and 30% DC fast charging vehicles and
the station can handle 1000 vehicles per day.

Source: https://afdc.energy.gov/stations/#/find/nearest

=
&
nf.
B
=
o
By

R T T = T e, S PR S
: by e P L, Sl

HOUR OF DAY

Levell mlevel? mDC Fast

Hourly load profile of a typical fast charging station
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Framework to
Calculate Total
Daily Load at
Hybrid Charging
Station (HCS)

SS: Station location index

IF: Industrial facility location index
EB: Electric bus

EM: Electric marine

ET: Electric truck

Calculate Daily Load at
HCS;

Daily Load at HCS; = Total Daily Load for EVs + Total Daily
Load for EBs + Total Daily Load for ETs + Total Daily Load for
IF; + Total Daily Load for SSj, + Total Daily Load to Charge
Swapped Batteries

Calculate Daily Load at
HCS; for Charging EVs

Daily EVs Charging Load at HCS; = Daily Number of EVs
Charged * Energy Charged per EV Trip

Calculate Daily Load at
HCS; for Charging EBs

Daily EBs Charging Load at HCS; = Daily Number of EBs
Charged * Energy Charged per EB Trip

Calculate Daily Load at
HCS; for Charging ETs

Daily ETs Charging Load at HCS; = Daily Number of ETs
Charged * Energy Charged per ET Trip

Calculate Daily Load at
HCS; for Charging IF;

Daily IF; Load at HCS; = Number of Charging IF loads *
Energy Charged per Time

Calculate Daily Load at
HCS; for Charging SSj,

Daily §S; Load at HCS; = Number of Charging SS loads *
Energy Charged per Time

Total Daily Load to Charge
Swapped Batteries at HCS;

Daily Load of Charging Swapped Batteries at HCS; = Total
Daily Load of Swapped Batteries for EVs + Total Daily Load of
Swapped Batteries for EBs + Total Daily Load of Swapped
Batteries for ETs + Total Daily Load of Swapped Batteries from
other HCSs
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Scenarios

e Scenario-1: Single on-route terminal charging station

Terminal-1 Terminal-2

e Scenario-2: Two on-route terminal charging stations

Terminal-2

Terminal-1
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Energy Management System

Wind Turbine

Supercapacitor

DC/DC
Converter

AC/DC
Converter

Power line
Data line

Control line

AC/DC
Converter

AC/DC
Converter

Energy Management
System (EMS)

DC/DC
Converter

DC/DC
Converter

Fast Charging Station

Control
system

|

MRAC
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Tracking Performance and Stability
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MRAC with Mixed-Integer Linear Programming

Step 1: Optimization Problem Formulation

The entire optimization issue may be stated as follows, taking into account the constraints and objective function established in
the preceding sections:

minimize R y =
subject to binary variables MRAC i—r ESS
storage model T PV
storage constraints WT Grid

-
Energy Price —{ Forecasting —
< L

power balance MMR

Load

N-R HES for FCS

[llustration of MRAC system with optimization strategy



MRAC with Mixed-Integer Linear Programming

Step 2: Optimization Problem Solution

The optimum input sequence for the prediction horizon N, is found by solving the MILP problem:

Uopt (K) = [ (tope(0)T (e (1)) ... (-uupt(f\rp—l))ﬂ

Step 3: Control Set-Points Execution

Although a whole series of N, future control signals is calculated, only u,,(0) is applied to the system, and the other optimum
values in ug,(K) are omitted

Step 4: Shift the Prediction Horizon

The prediction horizon is shifted, and steps 1 — 3 are repeated to generate a new optimum sequence, U,,(k). All
this is done by re-evaluating the system’s current state, re-calculating power electronic efficiencies, and then
resolving a new optimization issue.



Simulation of EMS with Optimization

Energy Management System

Fast Charging Station

A

i
x*

Yo vg

Transformer
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MNominal Charge

optTime
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Forecast Algorithms

CostForecast
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Power
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Energy Management

(b)

(a) Simulink model of the proposed EMS (b) MATLAB function block for EMS

Optimal Action
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Performance Analvsis
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Performance Analysis

The proposed system improves the utilization of the ESS and reduces the COE.

s (Coniventional EMS

[
m Proposed EMS

50

= Proposed EMS
_| === Conventional EMS |{

(%) Dos ssd

Time (hour)

Time (seconds)

(b)

(a)

(a) Energy storage system SoC profile (b) cost of energy of the system
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Performance Analysis
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Sensitivity Analysis - Electrical Power Requirement

Rate of Change in NPC with Electrical Power
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Emergency Analysis for Fast Charging Infrastructure
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EV Charging Models

AC Charging DC Charging

Wireless Chargmg Wired Charglng Charging

é “ " While Stop

EV

Charging
o Wired Charging While Moving

= - Wired Charging ﬂ/ Charging from |l Fast Chargin
~ = Single EV “' i
Wireless Chargmg Wireless Charging

é lopi éﬂ

Wireless Charging

[ — - Wired Charging [ e . T
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Charging from Regular
Multi EVs Charging

Charge Single
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Charge Multi
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Layers of Resiliency Analysis (LORA) of FCS

Charging Load Charging Unit Power System Energy Systems

RD42 |

BEE |2

WICR: Wireless Charing SBTR: Swap BT Resiliency Demand: RD
WDCR: Wired Charging CBTR: Charge BT Resiliency Likelihood: RL



Layers of Resiliency Analysis (LORA) of FCS

Frequency of
occurrence of “RD*”

Mitigated Mitigated Mitigated Mitigated
Resiliency Resiliency Resiliency Resiliency
Performance Performance Performance Performance
after layer-1 after layer-2 after layer-3 after layer-4

RD: Resiliency Demand, RL: Resiliency Likelihood



Emergency Index Analysis for Charging Station
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~
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El: Emergency Index



Performance Index Analysis for Charging Station
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Vehicle Energy Management for Charging in Emergencies

EV3 N11
N3 NA_ | =
N12
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Vehicle Energy Management for Charging in Emergencies

Impacted Area

[ Charging Station ]

[ Charging Station ]
(CSl)

EV3 N1l
N3 N4 - =N
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[ Charging Station ] N6
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<— Control Line
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Transactive Energy for FCS
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Distributed Optimization Model

Wireless
. PSQS
Optimizer algINg
Op o Thermal TES
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Energy-Water Coupling

Supply Strategy

Spga it e n ) Es del {5 Energy supply to water sources

Energy-Water Coupling

Energy supply to water treatment
Energy supply to water storage
Energy supply to water transfer
Energy supply to water loads

) EREL AT ST e 2 el 4 \Water supply to energy sources
Water supply to energy conversion
Water supply to energy storage
Water supply to energy transfer

Water supply to energy loads



Water-Energy Analysis Levels (Food-Health)

Transboundary-level

National-level

Regional-level

e Water scarcity, climate

e Water, energy and change and environmental
environment connections capacity

e Policy decisions regarding Je Policy intervention

e Systematic model institutional arrangement

framework ¢ Integrated implementation

framework

City-level
e Water and energy flows
o C(Climate changes and
pollutions

Urban nexus conceptual
framework

e Trade-offs of shared
resources

e |[nstitution coordination

o Benefits share
frameworks




Energy-Water in Farms

Lateral

- e — Sub-main Line
Flush Valve ™

X

- Smart Sensors/Data Analyzier



Energy-Water Optimization

* Objective function = min (f, + f, + f5)

* where f, is the cost of electric energy consumption, f, is the cost of
pump maintenance and f; is the cost of demand charges.

* f1
* f2

np
* f3 — i=1 Cm * SWmaxi
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Regional Water Network Model




Cost of energy (Cent)

Ontario Daily Energy Tariff
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Optimization Results
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Daily Power Consumption of Toronto Water
Pump Stations

2500 Hourly power consumption of Toronto WDN
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Integrated Collaborative Simulation for Regional Planning
and Optimization of Hydrogen Deployments Strategies

N

Optimization
Infrastructure
Collaborative
\ Manage Simulation
Transactive

Energ

Manage H2
Strategy

Manage H2

User Scenario

Interface

Manage H2
Technology

Manage

Manage KPI



Case

study 2: L
Starting
to
include
fuel cell
vehicles

Vst

e

- Darlington Nuclear "M
Generating Station =

-
K
P ering Nuclear
Generating Station




Hydrogen plant/s KPIs

(kg/year)

CO2 emissions (tons/year) CO2 emissions (tons/year) CO2 emissions (tons/year)
Operating costs (S/year)

Operating costs (S/year) Operating costs (S/year) Operating costs (S/year)
Capital costs (S)
Power demand Power demand Generated power
(MWh/year) (MWh/year) (MWh/year)
Water plants KPlIs
Water demand (ML/year)  Water demand (ML/year) Capital costs (S)

Operating costs (S/year)

Processed water
(ML/year)

96



System architecture

Must be updated every

time new modules are
developed/changed

Source code

Location:
Github

https://github.com/E
lenaVH/switch_E

Code is private: only
accessible to our
team

Two Installation options

Google collab:

Easy start, installation of 2-
3 minutes
Installation required on
every use
Information should be
saved constantly in case

collab limit is exceeded

Local:
e |[nitial installation is complex
¢ |nstallation required one
time (except when there are
code updates)
¢ Information storage is
flexible

switch

Modifying input data

Manually

From user interface (currently

not implemented

@ carbon_policies.csv

@ financials.csv

@ fuel_cost.csv

@ fuels.csv

@ gen_build_costs.csv

@ gen_build_predetermined.csv
@ gen_info.csv

@ load_zones.csv

@ loads.csv

modules.txt

@ non_fuel_energy_sources.csv
@ periods.csv
switch_inputs_version.txt
@ timepoints.csv

@ timeseries.csv

@ water_demand.csv

@ water_plants_info.csv

Interpreting output data

Manually

From user interface (currently

not implemented

£ chetchy arru sureacy. el pol
¥ gt arrual surmay. toch.oct
8% canetch. ycogencs:
B cosnnch water wide.swy
8% capatch woe s
O eten_peral el fumniyss
% DipaichBasecadtyFerion.cov
B pagpancrdencn
B Do
B Doguatctieter sy
€ elrerity eesten

0 gan proet, semus_sammaryces
! GenvumiaRame.cov

O P par_opact_anaal someyon
B ryiogen bebwce v

B pychngen b o

u: Fydiogen cag.ci
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Data preprocessing: Power

Power separation proportional to population density

Population in Toronto, East and Essa areas vs population in Durham region: Select applicable FSAs,

New
Tecumse

B /] I 1]
BURLINGION | L7L. LIM.LTN.L7E.
T7R L7, LT

SCALEE 11500000 . ORANGEVILLE LoV, LOW 7
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Em 10 0 1 X 3 Em LIL LIN LIP LIR
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248139
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GREATER. See Grester Toromto | 75
niHills ) Oro TORONTO AREA | Area map for all FSAs.

WELLAND 13B.13C 76

L
‘| A ‘ B | C | D E | F ‘ G | H ‘ | | J | K | L
1 |CENSUS_Y DGUID ALT_GEO_ GEO_LEVEL GEO_NAME TNR_SF  TNR_LF DATA_QUALITY_ CHARACTE CHARACTERISTICCHARACTEC1_COUNT_TOTAL
2 2021 2021A001° ADA Forward sortation area ADA 3.3 4.2 0 1 Population, 2021 1 44930
3 2021 2021A001° ADA Forward sortation area ADA 3.3 4.2 0 2 Population, 2016 1
4 2021 2021A001° ADA Forward sortation area ADA 3.3 4.2 0 3 Population percentage change, 2016 to 2021
5 2021 2021A001° ADA Forward sortation area ADA 3.3 4.2 0 4 Total private dw: 2 26102
h 2021 202140017 ANA Fnrward sartatinn area ANA 23 a2 n 5 Private dwellines 2 19752



Digital Architecture for Transactive Mobility
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Integrated Energy-Water-Food-Health-Transportation Data
Center (Efficiency, Conservation, Safety, Reliability)
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Al for Smart Energy-Water-Food-Health-Transportation
Infrastructures
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Integrated Modeling & Simulation for Smart Energy-Water-Food-
Health-Transportation Grids Planning, Control, and Optimization

Business Process Modeling

Gas Supply Networks

Gas-Power Technology

Assessment
Renewables Technology

Assessment
ESN KPI Modeling

Geographical & Environmental
Modeling

MEG Topology Modeling

Ontario Energy Model
(SEN / ESN)

Integrated
Ontario
Energy
Model

Application Layer

GIS Layer

Data Management

Communication / Control

Grid Physical System

Ontario Ministry of
Energy

Utility Companies

IESO / OPA /[ Licensing

Energy Technology /
Service Providers

Consumers

eration -
anager Ia a . cenarios
- ,
as N etwork rau 't Seenarios with elatio Process Models /Risk / Fsn
rocess Mo eswve e /FsNUpdates” pgates
Thermal Network e
Protection
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The Resilient Design of the Microgrid
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Real-time Co-simulation for Microgrid Applications
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H2VPRO — Novel Hydrogen Generation Technology

; ‘; -;:-) GPROSYS.COM

CPROSYS bBreen Production Systems (GPROSYS) Corp.

@ Type Alkaline Electrolysis
Dimension 30 x40 x50 cm
Electrode Ni 99.9%
Electrical input Voltage 3.6 V

Current 10.8 A

H, Purity 99.5%|
Temperature/Pressure Ambient (220C)/Atmospheric
Efficiency 94.3%

Consumed H>

Power mL/min

W

39 71 0.0004 0.0085 3.1174 106




. ‘; ._ﬂ) GPROSYS.COM

Key Features & Summary Description of SSWT CPROSYS Breen Production Systems (GPROSYS) Corp.

This patent is concerned with the ability to install a vertical axis turbine as a hydrokinetic turbine on both the board of maritime transports and
shoreline infrastructures. The patent is establishing a new Savonius turbine with a vertical axis concept S shape water turbine (SSWT), which
consists of a simple design with higher efficiency at low wind and water speeds than other turbines. In addition, this design presents a compact

size, self-starting, ease of installation and maintenance, and independence concerning water flow direction.
OO 0 0 00 0 0 O O

02303409,
o United States
az Patent Application Publication o) Pub. No.: US 2023/0340936 Al
Gaber et al. 43y Pub. Date: Oet. 26, 2023

(54) VI\.“’I‘I( AI A‘(Is I'lJI!'Il["(H W (57) ABSTRACT
ANE FOR MARINE 5

(713 Applicant: Hossam Gaber, North York (€A)

(723 Inventors: Hlossam €a ber, Morth York (€A
Ahuned Komtadnn Mahumsed, CAIRG
(ricay

€210 Appl. Moo 17/727.763

€22)  Viled: Apr. 24, 2022

(513 Imr €L
Foig 1322 (200601 )

(52) Us. OL
o o @I 1322 (201301 Fosa
(‘:CII 01)’ Fosi 220‘0’!2 (‘:0
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The Conventional OTEC System

turbine electricity
generator transmission cable

evaporator condenser

drain
water

drain
water

warm surface
seawater

25 - 35°C cold deep
seawater

3 -7°C

https://www.eia.gov/energyexplained/hydropower/ocean-thermal-energy-conversion.php



The Proposed OTEC System

Electric Power Output

Decide based on
location and

\- higher output

power

Vertical Turbine '

(It is used as electric power source for pumps)
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Welcome Message Hosted by
It is our great pleasure to invite you to join our International Conference on Smart Energy Grid Engineering (SEGE), i ontario'l"ech
which is sponsored by Toronto Section NPS Chapter and hosted by Ontario Tech University. This event will provide UNIVERSITY

unique opportunity to have fruitful discussions about smart energy grid infrastructures, technologies, engineering

design methods, and best practices that address industrial challenges. The event includes large number of speakers
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